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ADVANCES IN THE THEORY OF BOX INTEGRALS 

D. H. BAILEY, J. M. BORWEIN, AND R. E. CRANDALL 

ABSTRACT. Box integrals--expectations (lil') or (If'- 1]1 8
) over the unit n­

cube- have over three decades been occasionally given closed forms for isolated 
n, s. By employing experimental mathematics together with a new, global an­
alytic strategy, we prove that for each of n = 1, 2, 3, 4 dimensions the box 
integrals are for any integer s hypergeometrically closed ( "hyperclosed") in an 
explicit sense we clarify herein. For n = 5 dimensions, such a complete hyper­
closure proof is blocked by a single, unresolved integral we call /C5; although 
we do prove that all but a finite set of (n = 5) cases enjoy hyperclosure. We 
supply a compendium of exemplary closed forms that arise naturally from the 
theory. 

1. PRELIMINARIES 

We define box integmls 1 for positive-integer dimension n as expectations of \f1 8 , 

\i- £]1 8 with the relevant vectors chosen randomly, independently, equidistributed 
over the unit n-cube2 [13]: 

Bn(s) .- { \f1 8 Vi 
.lrE[a,l]" 

(1) !
1 

... t (ri + ... + r~)"12 drr .. · drn, 
.fa .fa 

~n(s) .- 1 \i-£}1 8 ViVif 
r,c]E[a,I]n 

1 1 

(2) 1 .. ·1 ((rr-qr)2 + .. ·+(rn-qn)2
)"

12 
drr .. ·drndq1 .. ·dqn. 

Here, Vi denotes simply the volume clement dr 1 dr2 · · · . As explained in a previous 
treatment [5], there are physical interpretations: 

(1) Bn(1) is the expected distance of a random point from the origin (or from 
any fixed vertex) of the n-cube; 

(2) ~n(1) is the expected distance between two random points of then-cube; 
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(3) Bn( -n+2) is the expected electrostatic potential in ann-cube whose origin 
has a unit charge;3 

(4) ll.n(-n + 2) is the expected electrostatic energy between two points in a 
uniform cube of charged "jcllium". 

Note that the definitions show immediately that both ll.n(2m) and Bn(2m) are 
rational when m, n are natural numbers. A pivotal, original treatment on box 
integrals is the 1976 work of Anderssen ct al. [1]. There have been interesting 
modern treatments of the Bn and related integrals, as in [7], [11, p. 208], [27] and 
[25]. Related material is also to be found in [16, 26]. 

There are other similar entities such as the expected distance between points on 
distinct sides of a cube or hypercube investigated in [11, §1.7] and [7]. We remark 
that B3(1) is also known as the Robbins constant, after [22]. 

It is worth noting that the methods of the present paper actually have practi­
cal application-for example in biology, of all places. In the work [14] these new 
box-integral evaluations are being used as one measure of "how random?" is a 
point cloud. That is, one test of whether brain synapses are sufficiently randomly 
distributed involves comparison of empirical values (\f'- 1]1 8

), where i, if run over 
synapse positions, against our present theoretical tabulations of ll.3 ( s). 

(3) 

(4) 

2. QUADRATURE FORMULAE FOR ALL COMPLEX POWERS 

As in our previous treatment [5], we define two key functions as 

b(u) .- t e-uzxz dx = yfir erf(u)' 
Jo 2u 

d(u) 
1 1 2 r;; 

11 -uz(x-y)z d _ -1+e-u +v1r·uerf(u) 
e dx Y- 2 · 

0 0 u 
These functions may be used as integration kernels, in the following way. 

(5) Rs 1 100 

r( -s/2) 0 

t-s/2-1e-tRz dt, 

Writing 

as valid for ~( s) < 0, we can integrate formally over R (being a radius, or a 
separation) in a relevant region, to obtain 

(6) 

(7) ll.n ( S) 

both representations being valid for a reduced range of complex s, namely the range 
~(s) E ( -n, 0). This domain of convergence for the integrals can be inferred from 
the large-u asymptotic behaviors; sec e.g., [2], 

(8) b(u) = ~ + 0 (e-u
2

), 

(9) 

so that having integrand factors bn, dn, respectively, allows integral convergence for 
the stated range ~(s) E ( -n, 0). Throughout, n will denote a natural number. 

3 Such statements presume that electrostatic potential inn dimensions is V(r) = 1/rn-2
, and 

say log r for n = 2; the main issue being that negative powers of r can also have physical meaning. 
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What can we say about analytic continuation ins? We can extend such previous 
results to all complex s, by paying closer attention to integrand structure. First, 
we can extend the region for negative ~(s) arbitrarily, by finding superpositions of 
terms b(ku) or d(ku), for integers k, such that the n-th powers of the asymptotic 
forms (8), (9) are genuinely of exponential decay. 

Second, for positive ~(s) and a positive integer K, we may employ the integral 
identity 

(10) D(p,K) roo rp-1 (1- e-tu( du = f(-p) t (K)(-1)ljP 
lo 1=1 J 

from which it is straightforward to derive integral representations for all s in the 
open right half-plane except for the positive even integers. 

Theorem 1 (Quadrature formulae for general complex s). In the region with 
~(s) < 0 we have 

(11) En(s) 2 1 roo -s-1( n() n n( )) 
1 _ 2n+s r( -s/2) Jo u b u - 2 b 2u du. 

For ~n ( s) in the same s-region, let A 1 .- 1 and consider the unique solution 
(A2, ... , An+2) to the linear system 

n+2 Ak 
(12) 0= L~' q=0,1,2, ... ,n. 

k=1 

Then 

(13) ~n(s) = r( _
2
s/

2
) (~ Akkn+s) -

1 

1oo u-•- 1 (~ Akkndn(ku)) du. 

Next, consider the region ~(s) E (0, 2K) with K a positive integer and s not an 
even integer. We have 

(14) 

(15) ~n(s) 
2 {oo K (K) . 

D(s/2,K) Jo u-s-1 du ~ j (-1)Jdn (uJ.J). 

Remark. As for nonnegative even integers s not covered in the above theorem, the 
definitions (1), (2) immediately yield rational values for En, Dn, respectively, upon 
symbolic integration. 

It is interesting that even though the goal of the above development is to provide 
practical quadrature formulae, we already have a byproduct: 

Corollary 1 (Pole structure of the box integrals). En ( s), for positive integer n, 
has precisely one pole, namely at s = -n. ~n(s), on the other hand, always has 
precisely (n + 1) poles, located at s = -2n, -2n + 1, ... , -n. 

Proof. Clearly, by the original definitions (1) and (2), En(s), ~n(s) are both finite 
for nonnegative ~( s), so it suffices to look at negative ~( s) in any case. For En ( s), 
relation ( 11) has a pole factor at s = -n. 
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FIGURE 1. Analytic continuation: Plots of B 2 (s) (top) and ~2(s) 
(bottom) for real s in various intervals. B2 ( s) is the expected value 
of r8 where r is the distance from origin to a random point on the 
unit square [0, 1] 2 Likewise, ~2 (s) is the expectation with r being 
the distance between two random points. B2 ( s) has a solitary pole 
at s = -2, while ~(s) has three poles at s = -2, -3, -4. Evidently, 
~2(s) also has a mysterious zero at some real s;;;::; -5.137 ... (see 
text). 

-5 

As for ~n ( s), the solution ( Ak) to the system of equations is unique since the 
matrix with entries ( -1 )k / ( k + 1 )i - 1 for 1 ::::; k, j ::::; n is nonsingular with determi­
nant ( -1) ln/2J f1~:11 Cn~1 l 1 (see sequence A002109 in Sloane's Online Encyclopedia 

of Integer Sequences). Poles of ~n force the prefactor I;~,!~ Akkn+s to vanish ex­
actly when n + s E [ -n, 0], thus giving a total of ( n + 1) poles on the negative real 
s-axis. It remains to check that I;~,!~ Akkn+s has no other zeros. This runs as 
follows. Consider the more general exponential sum 

N 

<J>N(t) := 2.::>1'j;3J = 1 
j=1 

for arbitrary real constants O:j and positive (Jj. If <I> N ( t) = 1 has more than N solu­
tions, then Rolle's theorem and some manipulation will produce a derived system 
with at least N solutions and one less term. We are done, since when N = 1 this 
is impossible. 0 
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By employing the quadrature options embodied in Theorem 1, we have been able 
to calculate various En ( s), ~n ( s) values to extreme precision. 4 

One may also use the quadrature prescription to create contiguous plots of box 
integrals, as in Figure 1. Referring to Figure 1, note that both plots show the 
"natural" pole at s = -2, where the standard expectation integral diverges for 
n = 2 dimensions. However, we see that ~2 also has poles at s = -3, -4 as in 
Corollary 1. 

3. QUADRATURE EXPERIMENTS 

We have employed the quadrature schema of Theorem 1 to effect extreme­
precision values. We might mention here that in fact this research began in earnest 
with the discovery, using the PSLQ integer relation algorithm (see [15] and [8]), 
that the extreme-precision numerical value we were able to compute for ~3 ( -1), 
namely 

(16) ~3( -1) = 1.88231264438966016010560083886836758785246288031070 ... 

was (experimentally) given by the formula 

(17) ~ + ~J2- ~J3- ~7r- 6log2 + 2log (1 + J2) 
5 5 5 3 

+12log (1 + V3)- 4log (2 + V3). 
Soon we were able to prove this evaluation.5 Upon further experimentation and an­
alytic discoveries, we realized that not only do some En for various n have constants 
in common-- such as log-surds, 1r, and so on-but the ~n constants also have many 
constants in common with themselves and the En- Such experimentation/ detection 
moved us to find algebraic relations between the various entities, as we describe in 
this paper. 

Our numerical approach was to implement, using the Fortran-90 interface to the 
ARPREC arbitrary precision software package [10], the four formulae of Theorem 
1, namely (11), (13), (14) and (15), and the definitions of the functions b(u), d(u) 
and D(p, K) as given by formulae (4), (3) and (10). As stated in Theorem 1, 
these formulae are valid for all s except for positive even integers. For positive 
even arguments the integration in (1), (2) is trivial and the relevant box integral is 
rational, obtainable quickly with symbolic processing. 6 

Computation of b(u) is entirely straightforward, once one has in hand an imple­
mentation of the erf function (see [2, pp. 297 298]). 

Computation of d(u) is complicated by the fact that for small arguments, cancel­
lation of terms in the numerator typically results in severe relative numerical error. 

4 As in previous works, by "extreme precision" we mean, loosely speaking, enough precision 
to resolve a given entity into fundamental (or at least previously studied) constants; in the mod­
ern era-the age of, say, LLL and PSLQ methods-- this usually means precision to hundreds to 
thousands of decimal digits. 

5 That is to say, the ~ became =. In the present work, we use = to mean rigorously proven; 

indeed, some of our more recondite closed forms were first found in the ~ sense, then later proven. 
6 Mathematica and Maple were both used quite heavily for much of this paper's development, 

and most of the work was symbolic. We have endeavored to check all results numerically, even after 
obtaining exact, symbolic forms. That being said. elsewhere in this paper we have for efficiency 
eschewed comments about which computer algebra system was used where. 

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 



1844 D. H. BAILEY, J. M. BORWEIN, AND R. E. CRANDALL 

This can be ameliorated by employing the Taylor series for d(u): 

uz u4 u6 us u1o u12 
(18) d(u) 1 - 6 + 30 - 168 + 1080- 7920 + 65520 - ... 

= (-1)nu2n 

~(2n+1)·(n+1)! 
Computation of the Ak coefficients was achieved by employing an arbitrary precision 
ver~ion of the well-known Linpack program for solving linear equations via LU 
decomposition [20]. 

The four formulae (11), (13), (14) and (15) of Theorem 1 themselves involve sig­
nificant numerical difficulties, as they involve near-cancellation of terms for small 
arguments. Nonetheless, we were able to compute the Bn(8) and Dn(8) to approx­
imately 470-digit accuracy, utilizing 500-digit working precision, by using Gau~sian 
quadrature, after splitting the integral into the interval~ (0, 1) and (1, oo), and 
applying the simple substitution w = 1/u on the second integral. 

We should add here that tanh-sinh quadrature [24], which we have used in nu­
merous other studies of this sort, was not needed in this ca~e, because each of the 
integrand functions in Theorem 1 are regular on the interval~ of integration. In 
addition, the tanh-sinh scheme suffers here from the cancellation difficulties men­
tioned above, since it relies on evaluating the function very close to endpoints of 
the interval. 

The numerical values we obtained in this fashion were used in conjunction with 
the PSLQ integer relation algorithm to find many of the analytical evaluations 
presented in this paper. All results are summarized in the Appendix. As explained 
at the beginning of the Appendix, 400-digit numerical values of these constants are 
available on a website. 

4. VALIDATION OF EXPRESSIONS 

To confirm the accuracy of the results in the Appendix, the B and t. integrals 
were separately computed using 500-digit working precision, programmed with the 
C++ interface to the ARPREC package. Integrals were evaluated by formulae (11), 
(13), (14) and (15), using Gaussian quadrature, and imported into Mathematica as 
numerical values. A parser for LaTeX source provided with Mathematica 7.0 was 
used to import the analytical formulae from the Appendix in a machine-readable 
format. Conversions were made to usc Mathematica built-in routines for computing 
the Lewin arctan integral, Clausen function and hypergeometric function. The 
accuracy of these formulae was then checked by subtracting the numerical values 
computed by quadrature with numerical values produced by Mathematica for the 
analytical formulae. In our first application of this method, four errors were found 
among the Bn(8) formulae and three among the t.n(8) given in the Appendix. 
Fortunately, in all but two cases we were able to find the correct formula merely by 
running PSLQ on the vector consisting of En ( 8) or t.n ( 8) and the component terms 
in the flawed identity. These results were then double-checked using Mathematica. 
Diagnosing the errors in the remaining two formulae, assisted also by Maple 13, led 
to significant enhancements in the final version of this paper. 

We observe that this type of checking- computing extreme-preci~ion numerical 
values for specific instances of left-hand side and right-hand side expressions in 
a formula, then comparing the results- is very generally applicable and highly 
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ADVANCES IN THE THEORY OF BOX INTEGRALS 1845 

effective in disclosing "bugs" in papers presenting new mathematical identities. 
Its general adoption would prevent many mistakes from making their way into 
published papers. 

5. ANALYTIC CONTINUATION FOR THE En 

In our previous work [5] we demonstrated that the En expectations can always 
be reduced by at least one dimension; for example, via vector-field algebra, En can 
be obtained from an integral over the (n- I)-dimensional unit cube, likewise for 
n > 1: 

(19) _n_ f (l + r2)sf2 Vi. 
n + s lrE[O.l]n-' 

Note that already with this reduction we see that En has a single, simple pole at 
s = -n, as the integral exists for all complex s. 

With the advantage of hindsight, we define right now a general and quite useful 
function 

(20) 

and we also define Co,o(s, a) := a8 12 . In this way we can begin developing relations 
for the Em as follows: 

(21) 
1 1 

E1(s)= s+lCo,o(s,l) = s+l' 

(22) E 2(s) = -
2
-c1 o(s 1) = -

2
- 2F1 (~ _::. ~. -1) 

2+s ' ' 2+s 2' 2'2' ' 

(23) E3(s) = -
3
-C2 o(s, 1) = ( )~ ) ("/

4 

((1 + sec2 t)"/2+1 - 1). 
3 + s · 3 + s 2 + s }0 

Note that the apparent pole at s = -2 for E 3 (s) is specious; the 1/(s + 2) factor 
cancels in this case, to yield 

(24) 
r/4 

3 Jo log(l + sec2 t) dt. 

For n = 4 and higher dimensions, such relations for the En rapidly become un­
wieldy. Taken= 4, and note that C3 (s, 1) is a 3-dimensional integral which yields, 
after integrating first in polar coordinates (r, c/J) to handle two of the dimensions, 

Again, the specious pole factor for s = -2 cancels, giving the special case 
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There is another form of analytic relation also derived previously [5], namely 

n1+s/2 ( 2 )k 
--"'( -s/2)k - f3n-1 k, 
n+s ~ n ' 

k?:O 

(27) En(s) 

where the (3 coefficients arise from the b function, implicitly as 

(28) 

and (a )k = r( a + k) /r( a) is the Pochhammer symbol. 
The (3 numbers enjoy the relations (here, d!! means 1 · 3 · · · d for odd-positive 

integer d): 

f3n,k 
1 

L (2k1 + 1)!! 
k,+ .. +k,=k 

1 

(2kn + 1)!!' 

k 1 

L (2k + 1)!! Bn-1,k-j, 
)=0 

f3n,k 

(29) (1 + 2k/n) f3n,k Bn,k-1 + (Jn-1,k, 

with the recursions here ignited by f3o,k := !So,k and !3n,1 = n/3. 
The main point is, for n > 1 the sum (27) is linearly absolutely convergent for 

all complex s. (The summand decay factor is essentially (1- 1/n)k.) Accordingly, 
the series gives the analytic continuation over the entire s-plane. This series repre­
sentation can be used computationally, either in place of the quadrature formulae, 
or as an extreme-precision check on the same. The analytic series does have one 
advantage over the quadrature formalism: One need not break the plane by polarity 
of ~(s); the series (27) always converges (and there is the correct single-pole factor 
1/(n+s)). 

6. THEORY OF HYPERCLOSURE 

We have seen that the box integrals En are expressible in terms of C-functions. 
It will turn out that there exist recurrence relations between C-functions; this leads 
eveutually to relations between ~n and En values, and closed forms in many cases. 

To quantify for our purposes what is a closed form, we first establish7 

Definition 1 (Ring of hyperclosure). We define a hypergeometric evaluation in a 
classical sense -to be a complex number I:n>O anzn where z is complex algebraic, 
ao is a real rational, and generally an+1 = -r(n) an where r is a fixed rational­
polynomial function (ratio of two polynomials each with integer coefficients). We 
then contemplate the ring of hyperclosure, generated by all hypergeometric evalua­
tions under ordinary operators ( ·, +). An element of this ring is said to be hyperge­
ometrically closed (hyperclosed for short). We also deem oo to be hyperclosed (so 
that hyperclosure cannot be denied at poles). 

7 !t has occurred to the present authors that the age-old notion of "closed form" might be 
addressable, as a separate research program, such as our Definition 1. However, in no sense can 
Definition 1 be all-encompassing; e.g., most would say that something like lj(1r +e) is a "closed 
form", yet for all we know it might not lie in our hyperclosure ring. 
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As examples, any rational (a sum with one term, say r := 0) is hyperclosed, and 
since 

log(1 + z) = z 2F1 (1, 1, 2; -z), 

it follows that combinations such as y'2 + 1r, 1rv'2, 1r10 log7 2, ~ log(1 + \1'2) are all 
hyperclosed. Relevant to the present work is the fact that the Lerch transcendent 

zn 
(30) <l>(z, s, a) '""""' , 

L (n+a)s 
n20 

is hypcrclosed for algebraic z, integers, and rational a. Thus, we shall have hyper­
closure for any poly logarithm Lis(z) := L:n>l zn /n 8 for integer s and algebraic z, 
so perforce for the Lewin arctan integral -

z2n+l z ( 1) 
(31) Ti2(z) L( -1)n (

2
n + 

1
)2 = 4<1> -z

2
, 2, 2 , 

n20 

and the Clausen function 

(32) '""""'sin(nz) 
L n2 · 
n21 

Our box-integral tables have hypcrclosed entries, except where "dangling integrals" 
remain when dimension n > 4. (Although we admit such unresolved integrals may 
still belong to the ring.) 

An interesting sidelight looms here: What numbers arc not hypcrclosed? Cer­
tainly we need such numbers to exist, lest our entire research program of finding 
hyperclosed expressions be a vacuous exercise. Given the algebraic character of 
parameter z in Definition 1, and the constraint that the succession ratio r(n) be 
rational-polynomial, together with the fact of all group generations under ( ·, +) 
yielding finite strings, we conclude that the ring of hyperclosure is countably in­
finite. Therefore: Almost all complex numbers are not hyperclosed. Equivalently, 
the ring of hyperclosurc is a null set in the complex plane. As often happens in 
such analyses, we are stultified by the question: "If non-hyperclosed numbers arc 
so overwhelmingly abundant, what is an example of such a number?" Well, we do 
not presently know a single such number. Perhaps 1r"' is not hyperclosed, but such 
questions loom Hilbertian in their evident profundity.8 

It is evident that the lowest-lying C-functions allow direct hypergeometric eval­
uation, so that B 1(s), B 2(s) are hyperclosed for any integer s, but that already 
for C2,o we ruu into some difficulty with the integration. Happily, there are some 
powerful connection formulae that we prove presently, starting with 

Theorem 2 (Convergent series for C-functions). For all complex s, integer n > 1, 
and ~(a) > 0 we have 

(33) Cn,o(s, a) (n+a)s/2L (n 2 a)k (-s/2)k f3n,k' 
k20 + 

with expansion being linearly convergent with k-th summands being 0 (((n- 1)/ 
(n+a))k). 

8 Such a radical disconnect between theory and knowledge occurs elsewhere; e.g., in the study 
of normal numbers. Though almost all real numbers are (absolutely) normal, only artificially 
constructed normals are known. 
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Proof. This expansion can be established using the same methods as for expansion 
(27), which is the case a= 1 as shown in [5]. D 

And now for some key recurrences: 

Theorem 3 (Fundamental relations for C-functions). Special instances of the C­
function are 

(34) Cn,o(s, 0) Bn(s), 

(35) Co,o(s, a) .- as/2 , 

(36) Cn,o(s, 1) n+s+1B () 
n+l S • 

n+1 
More generally, for all complex s, positive integer n, and positive real a we have 

(37) asCn,o(s- 2,a) (s + n)Cn,o(s, a)- nCn-l,o(s, a+ 1). 

Another recurrence, now involving the second index on C, is, for positive integers 
a,k, 

(38) sCn,k(s- 2, a) Cn-l,k-l(s,a + 1)- Cn-l,k-ds, a). 

Proof. The recurrence (37) is proved by invoking (J-rclation (29) to show the right­
hand side here in the theorem is 2a(8Cn,o(s, a)/Do) which equals the left-hand side. 
The recurrence (38) is easier, requiring simple integration by parts in the integral 
representation (20) for C. D 

We are now prepared to establish a central result that will lead to a host of 
closed forms, which follows: 

Theorem 4. For any integer s and positive integer a, all the numbers 

(39) Cn,o(s, a) .- { (a+ r 2 )s/2 Vi 
./ rE [O,ljn 

for n = 0, 1, 2 are hyperclosed. 

Remark. As with other parts of the present treatment, we not only prove hyper­
closure, but do this constructively, so that an algorithm for achieving closed forms 
is implicit in the proof. 

Proof. Co,o(s,a) := a8 12 and C1,o(s,a) = a8 I 2 2F1 (~,-s/2;3/2,-1/a) are clearly 
hyperclosed. So we turn our attention to C2,0 : For nonnegative even integer s, it 
is evident that the defining integral for C2,0 yields rational values. Consider, then, 
a single evaluation for negative even s, where we employ polar coordinates in the 
defining 2-dimensional integral to obtain 

(40) r/4 
C2,o(-2,a) = ./o dt (log(a+sec2 t) -loga) 

=-G+Ti2 +-log(1+v1+a --loga, ( 
2 + a - 2 v'f+{.L) 1r ;:;--:--::-) 1r 

a 2 4 

where 

(41) G 
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is the Catalan constant and as before Ti2 is the Lewin inverse-tangent integral; 
see (30), (31). Clearly C2,o( -2, a) is hyperclosed for positive algebraic a. Now, in 
recurrence (37) with n = 2, there is a term C1,0(s, a+ 1) which we have seen to 
be hyperclosed. The recurrence thus reveals that C2,0( -s, a) is hyperclosed for all 
negative even integers s. 

It remains to handle all odd integers s. We observe another "ignition value" 

(42) 

C2,o(1,a) = -~a312 tan- 1 (vk.) 
3 a 2 + 2a 

1 (a+2va+2+3) 1 +-(3a+1)log +-va+2, 
6 a+1 3 

and this again drives the recurrence (37) to yield hyperclosure for any odd s. 0 

7. HYPERCLOSURE AND THE En 

Theorem 5 (Interrelations for the En)· For integer n > 1 and all complex s, we 
have a recurrence 

(43) (n + s)(n + s- 1)En(s) =s(n+s- 2)En(s- 2)+n(n- 1)Cn-2,o(s, 2), 

as well as various higher-order recurrences enjoying reduced indices on the C­
functions; for example, 

2(s- 2)s(s + 1) Es(s- 4)- (s + 3) {s(3s + 7) E 5 (s- 2) 
(44) 

-(s + 4)(s + 5) Es(s)} = 60C2,o(s, 3). 

In addition, the residue Resn of the unique pole at En ( -n) is given for positive 
integers n by 

(45) nCn-l,o( -n, 1) 

2 n(n-1) 
---En(-n+2)+ Cn-2,o(2-n,2); n>2. 

n-2 n-2 

Finally, we have a special analytic-continuation value valid for all positive integers 
n: 

(46) En(-n-1) -nCn-2,o(1- n, 2). 

Remark. In the instances= -n where a pole is involved, an expression (n+s)En(s), 
on the face of it 0 · oo, is to be interpreted as the residue Resn at the relevant pole. 
These residues allow us to effectively traverse En-poles when applying recurrence 
(43). 

Proof. The first En, C recurrence ( 43) follows from the combination of proven rela­
tions (36) and (37). The second, higher-order recurrence is obtained by combining 
(37), (43). The residue formulae follow from (43) and (36). 0 

Theorem 5 allows us to evaluate important residues Resn, at least for low-lying n. 
In fact, we remind ourselves that Resn := lim£---+0 En( -n +c), and state the residue 
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evaluations that were essential in rigorously establishing our tables of closed forms: 

1r 
Rcs1 1, Res2 =-

2' 

Res3 
1r Jr2 

2' Rcs4 = S' 

Res5 
Jr2 

12 

Proof The evaluations for n 
Theorem 5. We then have 

1, 2 are easy, using the first residue relation in 

-2E3( -1) + 6C1,o( -1, 2), 

-E4( -2) + 6C2,o( -2, 2), 

Res5 
4 

-3E5( -3) - 4E5( -1) + 10C2,o( -1, 3). 

Each of these boils down to a rational times a power of 1r (we note that all four E 
values here are independently resolvable). D 

Incidentally, we believe that Rcs6 = 1r3 /64, and, remarkably, 0-Y. Chan has 
recently conjectured a result that implies Rcs7 = 1r

3 /120 with similar results for 
Res9,11,.... In any case it seems reasonable to conjecture that in general, Resn = 
Qn7rln/2J, where Qn is rational. Note that a proof of such a general conjecture 
would essentially yield an evaluation of any Cm,o( -m - 1, 1), for example, the 
specific conjecture about Rcs7 guesses a closed-form evaluation 

C6,o(-7, 1) 
1

1 11 2 2 -7/2 

0 
· · · 

0 
(1 + x 1 + ... x6) dx1 · · · dx6 

840 

We arc now in a position to state a summary theorem about the box integrals 
En. 

Theorem 6 (Hyperclosure for specific En)• For any integers, each of 

is hyperclosed. As for 5 dimensions and integer s, E5(s) is hyperclosed except 
perhaps for s = -2, -4. 

Remark. Again, the proof following is constructive; i.e., gives rise to an immediate 
algorithm for generating closed forms. Note the exceptions s = -2, -4 for n = 5 di­
mensions; these' exceptions represent the boundary of our current understanding of 
box integrals, even though these difficult cases may well be hyperclosed themselves. 

Proof. From Theorem 4 it is immediate that Em(s) = ~8 Cm-1,o(s, 1) is hyper­
closed for m = 1, 2, 3. So we turn to E 4 , and observe that for nonnegative even 
integers, the value E 4 (s) is rational. From the first recurrence in Theorem 5, and 
knowledge of Res4 , we may take one value of E 4(odd) and propagate that to all 
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other B4(odd). The same goes for even arguments. Therefore, if we establish hyper­
closure for B4( -1) and B4( -2), say, then we know all B4(integer) to be hyperclosed 
via Theorem 4. To these ends, we observe 

(47) 2log 3 - ~ G + 2 Ti2 ( 3 - 2 V2) - Vs arctan ( Js) 
and 

(48) 

A proof of (48) starts with (25) and the evaluation of the jellium value J4 is given 
in our previous paper [5]; said proof thus reduces to showing that 

[
1

log (
3 

+2
82

) ds =~log (2 + J3) + ~ log2- Ti2 (-2 + J3)- G. 
} 0 1 + s 4 4 

Using A2.2(3) in [19] this becomes 

[
1

log (
3 + 

82
) ds + ~ log (2 + J3) - ~ log 2 - ~ G = 0. 

} 0 1 + s 2 6 4 3 

Now substituting s = tan() yields an expression which computer algebra evaluates 
as 

~ G + i log ( 2 + J3) - Ti2 ( 2 + J3) - Ti2 ( 2 - J3) = 0. 

This is easily confirmed using [19, A2.2(3),(4)]. The proof of (47) is similarly 
completed; said proof reduces to resolving (70). 

Finally, we handle the difficult case n = 5. One can prove that 

B5(1) ~ v5 + -
1
-1r

2 - ~ v'3arctan (-
1
-) + 10 

log (y'5 + 1) 
6 360 3 v'I5 3 2 

+ 1

7

8 { K:1 - ~ log ( 2 + J3 ) } 
and 

where K:1 is a certain definite integral that has been resolved; see our later section 
on K:-integrals. Now, employing recurrence (44), together with the known residue 
Res5, we can propagate this knowledge of B5(±1) to all B5(odd). 

As for even integer arguments, note from our tables that B5 ( -6), B 5 ( -8) are 
independently resolved in terms of a hyperclosed integral K:4. But, via the second 
recursion in Theorem 5, this means every B 5 ( -k) is hyperclosed for even integer k 2': 
6. Thus the only exceptional instances out of all B5(integer) are B5(-2),B5(-4) 
as claimed. 0 

Another approach to recursions for En, ~n as a function of s (for all positive 
integer n) is via the linear differential equations satisfied by band d; see [12] and [11, 
p. 270]. This leads, for example, to an implementable 5-term recursion for B 4 (s) 
in terms of B4(s- 2), B4(s- 4), B4(s- 6), B4(s- 8) with coefficients polynomial 
ins. 
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8. HYPERCLOSURE AND THE ~n 

On the face of it. our definition (2) ofthe box integral ~n would appear to present 
a (2n )-dimensional integration problem. But a certain n-fold integral suffices; m 
fact we have 

(49) 

This reduction from 2n to n dimensions can be derived in various ways. Perhaps 
the most intuitive is to look at the probability density of a coordinate difference 
x = rk- qk, which turns out to be a triangle distribution with base [-1, 1] and 
height 1 at the origin-centered apex; i.e., the density is 1-lxl, and the new integral 
form follows. 

It is interesting that ( 49) has the "leading term" 2n Bn ( s) arising from the 1 
component of the integrand's product, indicating heuristically that ~n and Bn 
should somehow be analytic relatives. Indeed, one can carry such an idea much 
further, to end up with powerful analytic expressions for ~n(s). Simple symmetries 
of the integrand in (49) reveal that 

(50) ~n(s) 

On the other hand, we have the recursion (38) that may be used to decrement both 
indices n, k on Cn,k. Thus we have the intriguing principle that ~n can be formally 
expressed in terms of Cm,o functions, where m :::; n. But there is more: 
Some thought in regard to relations (36), (37), (43) reveals that the relevant Cm,o 
values lead back to the Bn box integrals, so that ~n can be formally expressed in 
terms of the Bn. The summary result follows: 

Theorem 7 (~n as an analytic superposition of B 2 , ... , Bn)· For arbitrary positive 
integer n and any complex s, we have an analytic superposition 

n m 

(51) ~n(s) = En(s) + L L Rm,j(s)Bm(s + 2n- 2j), 
m=2 j=l 

where En is an elementary function and each Rm,j is a rational-polynomial func­
tion. 

Remark. Thus ~nisin general a superposition of an E term and (n + 2)(n- 1)/2 
different B terms. 

Proof. This result follows from the combinatorics embodied in relations (50), (36), 
(37), (43). D 

Let us now give some entirely general analytic ~n evaluations; first the easy case 
n = 1, for which the sum in Theorem 7 is empty and we have a simple, elementary 
function: 

(52) l l 2 2 
2 (1- x)x2 dx = -----. 

.o 1+s 2+s 
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Note the two poles, as we expect from previous analysis. Then from the combina­
torics leading up to Theorem 7 we obtain 

(53) 
(3 + s)2~+ 1 + 1 4(s + 4) 

8 (s + 2)(s + 3)(s + 4) + 4B2(s)- s + 2 B2(s + 2). 

Now note the existence of three poles (at s = -4, -3, -2). Going yet deeper into 
the combinatorics, we have 

( -3~+2 s + 2~+3 ) (s + 5) + 1 24 
24 +--B2 (s+2) 

(s+2)(s+4)(s+5)(s+6) s+2 
24(s + 6) 12(s + 5) 

(s + 2)(s + 4) B2(s + 4) + 8B3(s)-
8 

+ 2 B3(s + 2) 

(54) 4(s+6)(s+7)B ( 4) 
+ (s+2)(s+4) 3 s+ · 

There arc some difficulties attendant on this 6.3 form; namely, the apparent pole at 
s = -2 is specious. In order to get, such as, the 6.3 ( -2) closed form in our tables, 
one needs to take a careful limit s --+ -2. ~ote also that the 6.3 pole at s = -3 is 
caused exclusively by the 8B3(s) term itself. Also, one needs a residue evaluation 
from Theorem 5 for the B 3 (s + 4) term at s = -7. 

At the next level we obtain the complete analytic continuation for 6.4 , in terms 
of B2, B3, B4: 

(55) 

(3 · 2~+3 + 28 +6- 3~+4) (s + 7) + 1 
6.4 ( s) = 64 -'-;-----::-;--;----:77---::-:-:-'---=-;-'-~ 

(s + 2)(s + 4)(s + 6)(s + 7)(s + 8) 
96 96(s + 8) 

+ (s + 2)(s + 4) B2(s + 4)- (s + 2)(s + 4)(s + 6) B 2(s + 6) 

64 96(s + 7) 
+ s+ 2 B3(s+2)- (s+ 2)(s+ 4)B3(s+4) 

32(s + 8)(s + 9) 
+ (s + 2)(s + 4)(s + 6) B3(s + 6) + 16B4(s) 

_ 88(s+6) B (s+ 2)+ 8(s+8)(6s+43) B (s+ 4) 
3(s+2) 4 3(s+2)(s+4) 4 

_ 8(s+8)(s+9)(s+10) B (s+ 6). 
3(s+2)(s+4)(s+6) 

4 

Again the apparent pole at s = -2 is specious, so one must work out another 
logarithmic limit in that case. For s = -9,-10 we may use the known residues 
of the B-poles. (The poles at s = -4, -5, -6, -7, -8 do exist; e.g. the term with 
B3(s + 2) has a pole at s = -5.) 
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Finally, as with lower dimensions, we can supply the following superposition 
formula for ~5 in terms of En with 2 :'::: n :'::: 5, 

(56) 
1 + (9 + s) (26+s/2 + 210+s _ 54+s/2 _ 2. 35+s/2) 

~5 ( 8 ) = 160 .:___:_(,....:2 c::_+_:_s_:_) .!,..( 4.:,.::+_s--:-)--:-( 6_+:.......::_s ):-(:-::-8-+-s7) -:-:( 9--:-+---:-s )-;-( -:-:1 0,..--+---;s )_.:__ 

320 B (6 ) 320 (10+s) B (8+ ) + 2 +s - 2 s 
(2+s) (4+s) (6+s) (2+s) (4+s) (6+s) (8+s) 

320 480 (9+s) B (
6 

) 
+ (2+s)(4+s)B3 (4 +s)- (2+s)(4+s)(6+s) 3 +s 

160(10+s)(ll+s) B (
8 

) 
+ (2+s)(4+s)(6+s)(8+s) 3 +s 

160 B ( ) 880 (8+s) B (4 ) + -- 4 2+s -- 4 +s 
2+s 3 (2+s)(4+s) 

+80 (10+s)(55+6s) B (6 +s) 
3 (2+s)(4+s)(6+s) 4 

80 (10+s)(ll+s)(12+s) B (
8

+s) 
3 (2+s)(4+s)(6+s)(8+s) 

4 

(7+s) 4 (9+s)(291+35s) 
+32B5 (s)-200 6 + 3 sB5(2+s)+3" (2 +s)(4 +s) B5(4+s) 

-~ (10+s)(ll+s)(47+5s)B (
6

+s) 
3 (2+s)(4+s)(6+s) 5 

4 (10+s)(ll+s)(12+s)(13+s)B ( ) 
+- 58+s. 

3 (2+s)(4+s)(6+s)(8+s) 

Such analytic formulae allow us to state a companion theorem to Theorem 6, as: 

Theorem 8 (Hyperclosure for specific ~n)· For any integers, each of 

is hyperclosed. As for 5 dimensions and integer s, ~5 ( s) is hyperclosed except 
perhaps for s = -2, -4,-12. 

Remark. A summary of results here: With Theorem 6, we now know that B1,2,3,4 
and ~1,2,3,4 arc all hyperclosed at every integer argument, and that all B5(integer), 
D5(integer) are now proven hyperclosed, except for the short exception list 

It is especially interesting that the resolution of just one of B 5 (-2), B5 ( -4) would 
settle this whole exception list, because a certain linear combination of these two 
B5 's is hyperclosed. 

Proof. All of these hypcrclosure results follow from the above analytic superposi­
tions for ~n in terms of B's, together with knowledge of all relevant residues Resn, 
n = 1, 2, 3, 4, 5. In particular, for n = 5, the terms in (56) involving B5's have argu­
ments s, s + 2, s + 4, s + 6, s + 8, so that whenever integer s rfc { -2, -4, -12}, only 
resolved B 5 's are involved. This established the set of three unresolved ~5 's. 0 
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9. DIFFICULTIES IN n ::::: 5 DIMENSIONS 

We have not been able to obtain hyperclosure for all integer arguments for n = 5 
because of the finite exception list (see the Remark after Theorem 8). There may 
be some future hope in employing 

r/4 r/4 r1 2+ /2 
(2+s)(4+s)B5 (s) = 4 Jo Jo Jo (sec

2
(a)+sec

2
(b)+z

2
) s dzdadb 

(57) -2 1r 11r/\F1 ( ~' -2- ~; ~; - cos2(b)) sec4+s (b) db+ ~ 5:
8

. 

For integer s the integral in z can be performed symbolically and the hypergeometric 
function evaluated. This reduces B 5 (s) to a double integral expression for s = -6, 
and also for s = -2, -4 on applying the l'H6pital rule. 

As for the sultifying scenario of n = 6 dimensions, we admit right off that we 
know not a single nontrivial closed form for a B6· One might conceivably use 

s r/4 r/4 r/4 I 
B6 (s) = (s+ 2) (s+4) (s+ 6) Jo Jo Jo (sec

2 
a+sec

2 
b+sec

2
c)3+s 

2 
dadbdc 

7r 3 n 2 3 
- 2 s + 2 B4 (s + 2)- 4 (s + 2) (s + 4) B2 (s + 4)' 

valid for all values of s. In particular, 

B6 (-7) = 8 11r/411r/411r/4 dadbdc 
15 o o o Jsec2 (a)+ sec2 (b)+ sec2 (c) 

3v'2 ( 1 ) 3v'2 2 + -
5
- arctan J8 1r + "32 1r . 

Moreover, the triple integral above resolves to 

111r/411r/4 arcsec (1 + sec2 (a)+ sec2 (b)) - ~~ 
2 o o ylsec2 (a)+ sec2 (b) 

= -~ [
2 

arcsec (z + 3) arcsec (z) dz 
4 }1 (z + 2)3/2 v"Z+'f 

+ Js { 2 arctan G)- 3 arctan G h)+~ arctan (2 V6)}. 
Thus we arrive at 

2 7v'2 2 7v'2 ( 1 ) sv'2 (1) - Ks + -- 1r - --1r arctan - + --n arctan -
5 60 5 J8 15 2 

(58) 2\1'3 ( ) -151r arctan 54 

where an integral form of K8 --an integral still unresolved, to our knowledge -is 
exhibited in the next section. 

10. K-INTEGRALS 

In a set of marvelous preprints, G. Lamb [17] managed to resolve some "dangling 
integrals" from our previous work [5]. We called these Km, form= 0, 1, 2, 3. Now, 
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via the combination of proof via alternative integration (as with result (69) below), 
together with the powerful Lamb techniques, we know closed forms such as 

1 arctanh ( ~) 3 
Ko := 1 

1 
+ y2 3+y

2 

dy = 2" Ti2 ( 3 - 2J2) (59) 

+~log(1+h)-~c. 
Thus Ko is hyperclosed. 

The next integral is perhaps the most difficult one of the present treatment. 
Along the way to the following answer-having started with the Lamb method­
were stages of symbolics, at times for us involving expressions of over 104 characters 
in modern symbolic processing: 

(60) 

where 

t arcsec (x) dx 
}3 v'x2- 4x + 3 

c12 (e) - c12 ( e + i) -Cl2 ( e - %) + c12 ( e - i) -Cb ( 3 e + i) 
+Cl2 ( 3 e + 

2

3
7r) - c12 ( 3 e - 5

6
7r) + Ch ( 3 e + 

5
6
7r) 

+ ( 6 e - 5 
2
7r) log ( 2 - v'3) . 

(
16- 3v'15) 3 e :=arctan 11 + 7r. 

It may well be that this closed form for K 1 can be further simplified. 
Not so hard, but certainly nontrivial, is 

(61) f"
14 

y'1 + sec2 (a) arctan ( 
1 

) da ./o y'1 + sec2 (a) 

~ Ti2 ( -2 + v'3) + i log ( 2 + v'3) + ;; . 

Finally, we have resolved a dangling integral from [5] involving dimension n = 5, 
as 

r/4 r/4 
./o Jo V1+sec2(a)+sec2 (b)dadb 

(62) 1 r.; 1 2 1 
- log(2 + v 3) + -7r -- B5( -3). 
4 48 10 

Indeed, the formula for the jellium constant J5 given in [5, §7.3] yields precisely 
(62) and the closed form for B5( -3) is listed in Table 4. 

Moving on, we hereby define additional K-integrals, starting with 

(63) 
arctan ( 1 

) 

1tr/ 4 J2+sec2 (t) 
K4 := 

0 
--r====~~~ dt 

y'2 + sec2 (t) 
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and r/4 r/4 
(64) Ks := Jo Jo log (1 + sec

2 (a)+ sec
2 

(b)) da db. 

Following suggestions in [18] and significant symbolic computation, we express K4 
explicitly in terms of complex dilogarithms. The computer algebra system produced 
an answer, which with considerable massaging became 

1 7Jr 3?T ( ~) 13?T
2 

10 
K4 = - arctan (2) + - arctan 27 + 20 v 2 - -

4
-

v 8 16 16 6 

+ ~ ~ { Li2 ( y'2 + i) - Li2 (-y'2 + i) } 
+ ~ ~ {Li2 (~ - ~ i - ~ y'2- ~ ih) 

4 5 5 5 5 

-Li2 (~- ~ i + ~ y'2 + ~ ih)} 
5 5 5 5 

(65) 

+ ~ ~ {Li2 (i_ - ~ i- ~ y'2- i_ ih) 
8 15 5 5 15 

-Li2 (i_- ~ i + ~ y'2 + i_ ih)}. 
15 5 5 15 

The arguments of the dilogarithms here solve an interesting, degree-12 polynomial 
system. One may use dilogarithm reflection formulae to obtain closed forms such 
as 

Vs K4 = Li2 ( ~, 8) + Li2 ( ~, ?T - 8) - Li2 ( ~, ?T - a) + Li2 ( ~, jJ) 
(66) + (?T- 88) arctan (D, 

where 

e :=arctan ( ~), a:= arctan ( ~4++43~) and p :=arctan ( ~3++34:), 
with the Lewin generalization Li2(r,¢) := ~Li2 (rei<P); see [19, A2.5 (1)]. It is 
immediate that K4 is hyperclosed, since in our K4 formulae any arguments re±ill 
are all algebraic, and 2~Li2(z) = Li2 (z) + Lb (z*). 

So, we know that Ko,1,2,3,4 are all hyperclosed, but we do not know this for K5 . 

Various recondite, but alas partial results can be derived, starting typically from 
( 64) and employing coordinates tan a, tan b over the unit 2-square. One can obtain 
such a 1-dimensional-integral dependence 

1
1 arctan ( vt) arctan ( kt) 7T ?T2 

(67) Ks dt - - G + - log 3 
0 v'3+t (2 + t) 2 16 

+ i ( 3 - vs) Ti2 ( 3 - Js) + 1~ Ti2 ( ~) + ~
2 

log( y'2- 1), 

or an efficient sum 

?T
2 

log 3- "' -
1 

.;:.._ (m) (h - !!_) (h - - !!_) 
16 L m3m L · 1 4 m 1 4 ' 

m2:1 J=O J 
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where hk := 1- 1/3 + 1/5- · · · ± 1/(2j- 1), with h0 := 0. This summatory repre­
sentation allows extreme-precision evaluation of K5 without recourse to quadrature 
per se. 

Now to the concept of alternative integration: It is highly interesting that the 
box-integral theory can sometimes be used to resolve previously unknown integrals 
that have, on the face of it, little to do with n-dimensional boxes. A canonical 
example is the case of ~3( -2), which is obtained through the rather delicate limit 
process s--+ -2 in (54) in order to complete hyperclosure for n = 3. But when we 
attempted to evaluate ~3( -2) from the alternative formula 

(68) 81 (1-x)(1-y)(1-z) d d d 
2 2 2 X y z, 

rE[0,1]3 X + Y + Z 

we ended up with a single, troublesome arctan integral as the "dangling term". But 
the (s--+ -2) limit procedure docs a complete hypergeomctric breakdown, and all 
of this proves the result 

(69) j .
1 

~arctan(~) dz 
o 1 + z2 

1 G 1r 1n 1 1n 2- 2 + 4 log(1 + v2) + 2 Ti2 (3- 2v2). 

We do not give here a direct proof of this integral relation, although G. Lamb has 
now provided a fine analytic evaluation of K5; see [18]. Another example of an 
indirect integral resolution is 

r/4 
Jo log(1 + )2 + scc2 t) dt 

(70) -G + 2 Ti2 ( 3 - 2J2) + ~ log ( 1 + J2) . 

Finally, we define 

(71) K
8 

:= ! 2 
arcsec (x + 3) arcsec (x) dx, 

1 V(x+1)(x+2)
3 

and observe that K 8 , along with the elusive K 5 , arc the only unresolved instances 
of our integrals Ko,1, ... ,8· 

Again, knowledge of K8 would give us B5( -7), as in (58), while hyperclosurc of 
K5 would establish hyperclosure of all B 5 (integcr), ~5 (integer). 

11. CURIOSITIES 

One new result of some interest is that another unphysical, but valid analytically 
continued value discussed in our previous work [5], namely 

B4( -5) = -0.961203932689953457121659780024745 ... 

is now known in closed form. In fact, this previously mysterious analytic-continu­
ation value is -v'sarctan(1/VS) (see Tables and the last part of Theorem 5). 
However, there arc still many unexplained empirical phenomena. For example, we 
do not know in closed form the zero of ~2 ( s) at 

s = -5.1378771851212623537 ... ' 
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though we have developed herein enough machinery to find this zero to extreme 
precision. (See Figure 1 for a pictorial of the zero.) Moreover, we arc not aware of 
any other zeros in n = 2 or any other dimension; evidently, this zero of ~2 is some 
kind of anomaly. There is also an empirical local minimum for E2, at 

s = 3.6675667756027541433 ... , 

and again a closed form is unknown. 
Another curiosity is that some statistical quantities over the hypercube are al­

most trivial to resolve. For example, the exponential expectations 
->-217'12 En(A) := (e )rE[D,W• 

F ( ') . ( ->-211'-<112) 
n A .= e r,</E[O,l]n, 

for constant A do not need to be obtained from a generating function or series or 
anything complicated. Instead, closed forms are immediate, based on the defining 
relations (3), (4): 

En(A) = bn(.X) = (
2
:) n erf n(.X), 

Fn(A) = dn(A). 

The allure of such closed forms is that they hold in all dimensions, and may well 
replace the box integrals En ( s), ~n ( s) as the right tools to assess the statistical 
character of point clouds, again as in reference [14]. In spite of this streamlined 
approach to cloud measures, it seems (heuristically) that both of 

(e-~<IT1 )rE[D,W, (e-~<li'-<11 )r,</E[O,l]n 

should be extremely difficult to evaluate in any general way. Even if one were to 
revert to series expansion of the exponential, one would need En ( s) for all non­
negative integers s, yet we have met with extreme difficulties when n > 5. This 
is uot to claim some clever prescription-a novel use of recurrences, or differential 
relations --would not solve this problem. 

And what about nonintcger arguments for the box integrals? One might extend 
the definition of hypergeometric closure based on such findings as 

E3 (-~) = -21r- -
8
-F1 (~·! ~- ~-! _!) 2 5. 2t 4, 2' 4, 4, 2, 2 

16 r (~) (5 3 7 ) 
+ 5V?T r Cf) 2Fl 4' 4; 4; -1 . 

(72) 

Here, F1 is the Appell hypergeometric function defined as a series in two vari­
ables [2]. Thus we expect entities such as E3(odd/2) to involve the Appell hyper­
geometric. Such examples suggest that there might be a kind of higher level of 
hypergeometric-closure theory for noninteger rational arguments s. 
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TABLE 1. Some relatively easy evaluations for Bn(s). Every 
Bk(integer) fork= 1, 2 can be given a closed form (see Theorem 6). 

n s Bn(s) 

any even 2: 0 rational: B2(2) = 2/3 

1 -1 00 

1 any 1 
s+l 

2 -4 1 " -4-8 

2 -3 -V2 

2 -2 00 

2 -1 2log(1 + V2) 

2 1 ~y'2 + ~ log(1 + v'2) 

2 3 fov'2 + -k log(1 + y'2) 

2 any 2 Fe s.3.1) 
2+s2 1 2 1 -2 1 2 1 -

TABLE 2. Example evaluations of B3(s). Every B3(integer) can be 
given a closed form, being as we can express every B3 in terms of 
a function C2,0 which we have shown to be hyperclosed at relevant 
arguments. 

n s Bn(s) 

3 -5 -~v'3- fl7r 

3 -4 - 2 y'2 arctan ....!.... 2 v'2 

3 -3 00 

3 -2 -3G + ~7r log(1 + y'2) + 3 Ti2(3- 2J2) 

3 -1 -~1f +~log (2 + v'3) 

3 1 tv'3- ~'if+ ~log (2 + v'3) 

3 3 %v'3- ilo1r +fa log (2 + v'3) 

3 any Integral representation (23), relation (36) 
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TABLE 3. Example evaluations of B4(s). Every B4(integer) can be 
given a closed form, on the basis of recursions and "ignition values" 
such as the pair B4(-l),B4(-2). 

n 8 Bn(s) 

4 -5 -v's arctan ( -Ts) 
4 -4 00 

4 -3 4 G- 12 Tb(3- 2v'2) 

4 -2 1r log (2 + v'3)- 2G- "8

2 

4 -1 2log 3- ~ G + 2 Ti2 (3- 2 v'2) - v'8 arctan ( 7s) 

4 1 ~- ft +/a- Tb (3- 2v'2) + log3- W arctan ( -Ts) 
4 any Integral representation (25), recursions (43) 

1861 

TABLE 4. Example evaluations of B5(s). Here 8 = arctan((16- 3v'l5)/11). 
We have proven that every B 5 (odd) is hyperclosed. Note that JC4 here is known, 
hyperclosed; yet, an unresolved ("dangling") integral K 5 is not yet known to 
be hyperclosed, but may well be. A hyperclosure proof for }(5 would serve to 
establish all the B5( even) by settling B5( -2), B5 ( -4), leading thus to resolution 
of all Bn(integer), D-n(integer) for n = 1, 2, 3, 4, 5. 

n s Bn(s) 

5 -8 25 /( 25 V2 ( 1 ) 5 ( 1) 36 4 - 288 .,.. arctan 72 - 72 arctan 2 

5 -7 1 ( 1 ) 1 2 - 73 arctan ~ - 120 -rr 

5 -6 5 /C4 - ~ 7T V2 arctan ( ), ) 

5 -5 oc 

5 -4 -5 /Cs - % tr G + ~ -rr 2 log ( 1 + V2) + % 1r Ti2 ( 3 - 2 J2) 

5 -3 1 ~0 G- 10 log ( 2- V3) 8- ~ -rr2 - 10 Cl2 ( ~ 8 + ~ 1r) + 10 Clz ( ~ 8- i 1r) 
+lj Cl2 (8 + i -rr) + ¥ Cl2 (8 + ~ -rr)- lj Cb (8 + ~ -rr)- ¥ Cb (8 + lj -rr) 

5 -2 ~ B5( -6)- ~ Bs( -4) +% tr log 3 + 10 Ti2 ( ~) - 10 G 

5 -1 - 1,'," G + lj 8 log ( 2 - .;3~ + -fs -rr 2 + 5 log ( 1±;fii) - % .j3 arctan (-;;h) 
+ .!Q Cl2 (- 8 + .i tr) - .!Q Clz ( .i 8 - .i tr) 

-lj- Cl2 (e + i -rr) -
3 4¥ Clz 

3
(8 + f -rr) + 4 Cb (i+ ~ -rrJ + 4¥ Cl2 (e + ¥ -rr) 

5 1 _72 G +I 8log (2-~ + __!___ -rr 2 + .i v'5 + .!Q log ( ~)- .1 .;3arctan (-1-) 81 9 360 6 3 2 3 v'l5 

7 1 
+ 01fl2(~8+},.)-~Clz(~0-3-rr) 14 11 - 27 Clz (8+ 6 -rr)- 27 Cl2 (t9+ 3 rr) + 27 Cl2 (8+ J") + 27 Clz (8+ 6 rr) 

5 any odd Closed forms follow from recursion ( 43), using residues as needed 

5 any even Closed forms follow from recursion (43), using residues as needed, 
with only B5(-2),Bs(-4) remaining unresolved. 
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n 

3 

3 

3 

3 

3 

3 

3 
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TABLE 5. Some relatively easy evaluations for ~n(s). Every 
~k(integer) for k = 1, 2 can be given a closed form (see Theo­
rem 8). ("\" ote: The dosed form for ~2 ( -1) here has been repaired 
w.r.t. the previous work [5].) ' 

n s ~n(s) 

any even~ 0 rational: ~2(2) = 1/3 

1 -1, -2 oc 

1 any 2 2 
s+1 - s+2 

2 -5 i+ §y'2 3 9 

2 -2,-3,-4 oc 

2 -1 1-1J2 + 4log(1 + J2) 

2 1 { 5 + -fsJ2 + i log(1 + J2) 

2 any Formula (53), using known En-residues as needed 

TABLE 6. Example evaluations for ~3 (s). Every ~3 (integer) can 
be given a closed form (see Theorem 8). 

s L'>n(s) 

-7 !-¥+¥+-&-
3,-4,-5,-6 = 

2 2rr - 12 G + 12 Ti2 ( 3 - 2 J2) + 6rrlog ( 1 + J2) + 2log 2 - ~ log 3 - 8 J2 arctan ( ),-) 

-1 ~- ~,. + ~)2- !v'3 + 2log (1+ V2) + 12log ( 1~)- 4log (2+ v'3) 

1 -
1N - ~ rr + ¥, J2- ~ y3 + 2 log ( 1 + J2) + 8 log ( 1~) 

3 - 165 - 1~5 ,. + .;'4
3o J2 + ts V3 + s\ log ( 1 + V2) + H log ( 1~) 

any Formula (54), using known En-residues as needed 
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4 

4 

4 

4 

4 

4 

n 

5 

5 

5 

5 
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TABLE 7. Example evaluations for 6.4 (s). Every 6.4 (integer) can 
be given a closed form (see Theorem 8). 

8 ~n(8) 

-4, ... ,-8 00 

-3 -\2
5
8 + Jf 1r- 8 log (1 + v'2)- 32 log (1 + v'3) + 16 log2 + 20 log3 

-~ v'2 + ¥V3- 32v'2arctan (?s)- 96Ti2 (3- 2v'2) + 32G 
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-2 -f% 1rv'3- £ 1r log2 + Jf 1r log (1 + V3)- ~ 1r2 + ~ 1r + ~ v'2arctan (2v'2) 
+~ log3- 47r log (v'2- 1) + 8Ti2 (3- 2 v2)- ~G- £ log2 

-1 - ~{~ - ft 1r - ¥- log 2 + ~ log 3 + 1
6
0
8
5 v2 - ~ v'3 + ~ log ( 1 + v2) 

+f log (1 + V3)- ~ G + 8Tb (3- 2 v2)- ~ v2 arctan (v2/4) 

1 - 1
2
i5 - }1

6
5 7r - 1

5
o
2
s log 2 + !~6 log 3 + 6

7
3
3
o v2 + 1~5 v'3 

+-filog (1 + v2) + ig~ log (1 + V3) - 1
6
0
8
5 v2 arctan ( ?s) --fs G 

+t Ti2 (3- 2v2) 

any Formula (55), using known En-residues as needed 

TABLE 8. Example evaluations of 6.5(s). It is proven that ev­
ery 6.5(odd) is hyperclosed. Every 6.5(even) is hyperclosed, with 
perhaps three exceptions as in the table. 

8 ~n(8) 

-5,. 0 0 ,-10 00 

1 -
1
s
2rl 0 - 1:9 1r + 3is 1r2 - 3~~9s + 6~233io v2 + 3

5
4
6
6
8
s V3- 3

2
8
3°7 v5 

+ 295 log 3 + .l log (1 + v'2) + .£Q log (2 + v'3) + _M_ log (ltv'S) 252 54 63 189 2 

- N v2 arctan ( _1_) - _§_ v'3 arctan (-1-) + 104 log (2 - v'3) (} 63 v8 21 vT5 63 
+§. Tb (3- 2 v2) + 104 Cb ( l (} + - 7r) - 104 Cb ( i (} - l 7r) 

1o4 Cl (e 1 ) 208 Cl (e3 
1 ) 

3 
101

3c1 (e 
63

s ) 2o8 c~ (e 11 ) - 189 2 + 6 7r - 189 2 + 3 7r + 189 2 + 3 7r + 189 2 + 6 7r 

any odd Closed forms follow from (56), using residues as needed 

any even Closed forms follow from (56), using residues as needed, 
with only ~s(-2),~5(-4),~(-12) remaining unresolved. 
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TABLE 7. Example evaluations for b.4 (s). Every b.4 (integer) can 
be given a closed form (see Theorem 8). 

s D.n(s) 

-4, ... ,-8 CXJ 

-3 -\2
5
8 + Jf 1r- 8 log (1 + v'2)- 32 log (1 + V3) + 16 log2 + 20 log3 

- ~ v'2 + ¥ V3 - 32 v'2 arctan ( Ts) - 96 Tb ( 3 - 2 v2) + 32 G 

1863 

-2 - i% 1r V3 - ~ 1r log 2 + Jf 1r log ( 1 + V3) - ~ 1r2 + t 1r + ~ v'2 arctan ( 2 v'2) 
+~ log3- 41r log (v2 -1) +8Ti2 (3- 2v'2)- ~G- ~ log2 

-1 - ;{~- fs 1r- lf log 2 + ~ log 3 + 1
6
0
8
5 v'2- * V3 + t log (1 + v'2) 

+-f log (1 + V3) - ~ G + 8Tb (3- 2 v'2) - ~ v'2 arctan ( v'2/4) 

1 - 1
2
}5 - 3\65 1r - 1

5
g5 log 2 + !~b log 3 + Jio y'2 + 1~5 V3 

+fr log (1 + v'2) + ig~ log (1 + V3)- 1
6
0
8
5 v'2 arctan ( -Js)- -fg G 

+tTb(3-2v'2) 

any Formula (55), using known En-residues as needed 

TABLE 8. Example evaluations of b.5(s). It is proven that ev­
ery b.5(odd) is hyperclosed. Every b.5(cven) is hyperclosed, with 
perhaps three exceptions as in the table. 

s D.n(s) 

-5, ... ,-10 CXJ 

1 -WiG- 1~9 1r + 3f5 1r2 - 3~;?5 + 6;
2
3
3io Y2 + 3

5
::5 V3- 3

2
8
3°7 v'5 

+;i~ log3 + -tJ log (1 + v2) +~log (2 + V3) + 168~ log(¥) 

- H v'2 arctan ( JB) - 2'T V3 arctan \ k) + 1
6°34 log ( 2 - v'3) IJ 

+!!. Ti2 (3- 2 v2) + 104 Ch (! IJ + 3 1r) - 104 Ch ( i 11 - t 1r) 
10~ 7 1 208 63 4 3 104 63 5 208 11 

-189 Cl2 (l1 + 6 1r)- 189 Cl2 (l1 + 3 1r) + 189 Ch (l1 + 3 1r) + 189 Cl2 (l1 + 6 1r) 

any odd Closed forms follow from (56), using residues as needed 

any even Closed forms follow from (56), using residues as needed, 
with only D.5(-2),D.5(-4),D.(-12) remaining unresolved. 
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12. CONJECTURES AND OPEN QUESTIONS 

We conclude by reiterating the following open questions. 

(1) Is it a reasonable conjecture that every box integral Binteger(integer), 
~integer(integer) be hyperclosed? That is, could it be that our results for 
n ::; 4 are actually extensible for all positive integer n? 

(2) Is there a general evaluation (hyperclosed or not) of Bn(-n- 1) for all 
natural numbers n? 

(3) What transpires for noninteger but rational s in dimension n ::; 5 (see 
relation (72) )? 

(4) Can K-5 be resolved? As we have said, this is the sole blockade to proof of 
hyperclosure for all B5 (integer), ~5 (integer). 

(5) Referring to Figure 1, what is a closed form for the mysterious zero? Are 
there any other (possibly complex) zeros of any ~n whatsoever? Is there a 
closed form for the local minimum of B 2 (s) at s ""3.667 ... ? 

(6) What is an explicit number that is not hyperclosed? Even though almost 
all numbers are not hyperclosed, we presently do not know of a single such 
number. We have suggested that perhaps 1r" is not hyperclosed; moreover, 
in the absence of known hypergeometric forms for the Euler constant 1, 
one is tempted to conjecture that it, too, is not hyperclosed. 

13. APPENDIX: COMPENDIUM OF PROVEN CLOSED FORMS 

Numerical tables in support of the following closed forms are to be found at 
http://crd.lbl.gov/-dhbailey/dhbpapers/box-int-b-delta.txt 
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